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ABSTRACT

Wl Fo0°°
An analog device which is capable of enhancing the effective resolution

of certain analytical instruments is described. This enhancement is
effected by the mathematical operation of deconvolution. An improvement
in resolution by a factor of six has been achieved. This device is also
capable of computing the convolution integral which is used to describe the
effects of various instrument parameters on instrument performance.
The theory of operation of this device is given and information sufficient
for construction and operation is supplied. Examples of results obtained

in several typical situations are presented. m
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1, Introduction
1.1 Discussion of Resolution

When describing the performance of an instrument that
has as its output a spectrum, it is convenient to define a term
called resolution. The methods of defining resolution vary from
one class of instruments to another because different physical
quantities are being measured, and thus the line shapes vary in
mathematical form. However, problems arise because there are
inconsistencies in defining resolution within a given class of
instruments. Rayleigh's criterion is frequently used for defining
the resolution of an optical system. Physically, this corresponds
to a 19 per cent drop in amplitude between two adjacent maxima of
equal amplitude., but there are devices that can easily detect a
4-5 per cent drop in amplitude. As a result of this, there is
disagreement in defining resolution. Consequently, it is always
necessary to write the equation of resolution. However, even
when the equation of resolution is given, it is still only a semi-
quantitative description of an instrument's performance, for it
attempts to give neither any reasons for the limitation in per-
formance nor methods of treating the ''unresolved'' data.

1.2 Definition of Convolution Integral

It has been known since the last century that a more
useful treatment of instrument performance exists in the Fourier

convolution integral. Let us immediately write this equation

(o o]

Fix)= f Tx)AK-x)dx (1)

-Q



where: F(x') is the instrument's output spectrum which includes

instrument aberrations and is called the output function;
T(x) is the ideal spectrum that is free of instrument
aberrations and is called the true function;

A(x'-x) is a function that characterizes the aberrations
introduced by the instrument on T(x) and is called the
apparatus function.

1.3 Conditions for Applying Integral to Describe Instrument

Performance

Certain easily satisfied conditions are necessary for the
use of this equation. The first condition is that the various peaks
in the spectrum obey the law of superposition. The second is
that the apparatus function be stable throughout an experiment.
The third is that the peaks in the same spectral range have the
same characteristic shapes when normalized.

It is of interest at this point to note the following.

If we normalize the apparatus function

(0.0]

f A(x'-x)dx =1 (2)

-Q0

and employ the convolution identity found in Mikusinski (1959)

o0 (0 0] 0

f d/. Alx'-x)T(x)dx'dx = f A(z)dz fooT(x)dx (3)
-00 - -Q0 -00

then integrating equation (1) over x' yields
o) fe's} 00

_J F(x')dx' = -’Ci/‘ | A(z)dz A_J“T(x)dx (4)




oo o)
J Fxax'= [ T(x)ax. (5)
-0 -
This result is very satisfying from the viewpoint of energy
in that the total energy in a spectrum is the same for F(x') and
T(x), and hence, only a redistribution of energy occurs upon

integration.

1.4 Application of Integral to Practical Spectrometers

There are two cases of particular interest in applying
the convolution integral to practical spectrometers. The first
is the case when A(x'-x) = 6(x'—x)i"< Carrying out the integration,
we readily see that F(x') = T{x'). This case corresponds to a
spectrometer that has infinite resolving power; thus, it is only
of hypothetical interest. The second case is when T(x) =
Zalé(x-bi). This corresponds to a completely resolved spectrum
ihat exists at the input. The result of the integration depends
upon the width of the apparatus function and the distances between
delta functions. If the distances between the delta functions are

greater than the width of the base of the apparatus function, the

integration yields a series of completely resolved peaks whose

shapes are governed by A(x'-x) and whose amplitudes are
determined by the a; coefficients. If the distances between the

delta functions are less than the width of the base of the apparatus

function, the integration yields a series of overlapping peaks

#(x'-x) is a Dirac delta function which is a mathematically
improper function. It has the following properties:
(1) 6(x-b) =0 forx £ b

(2) jf(x)& {(x-b)dx = f(b) if the region of integration includes
x = b, and is zero otherwise.



whose shapes are governed by A{x'-x) and by the a; coefficients.
To use the convolution integral in a practi_c_al situation one
needs to know the apparatus function. This function can be
determined by introducing a single component into the instrument
which is mathematically representable by T(x) = §(x-b). Again,
carrying out the integration, we see F(x') = A(x'-b). This method
of determining A(x'-x) is analogous to determining the impulsive
response of electrical and mechanical systems, and thus
A(x'-x) can be viewed as characteristic of the response of the

instrument.

1.5 Previous Convolution Studies

Because of the usefulness of the convolution integral in
predicting the effect on the output function of various instrument
parameters like finite slit widths, considerable effort has been
spent on writing the causes of aberrations in terms of convolu-
tion transforms. The papers by Rautian (1958) and Duffieux
(1960) are comprehensive reviews in this vein. The mathemati-
cal properties of convolutions which are used in these reviews
are well documented in texts like that of Mikusinski (1959) and
of Widder (1955). Descriptions of instrument aberrations
have also been given in terms of information theory by King and
Emslie (1951 and 1953).

1.6 Definition of Deconvolution

In addition to explaining the effects of aberrations on the

true spectrum, this equation offers the opportunity to increase




the effective resolution of an instrument by solving the equation
for T(x) knowing F(x') and A(x'-x). Solving for T{x) is known

as deconvolution. Deconvolution is also known as 'unfolding',
'decomposition’ and 'entschmierung'. The solution for T(x) by
analytical methods is quite complicated and often tedious. How-
ever, the advent of the computer, both analog and digital, has
stirred renewed interest in solving for T(x).

1.7 Previous Qgconvolqt_ion Studies

Some of the deconvolution methods that are available
are presented in the following publications. Purely analytical
solutions have been demonstrated by Whittaker and Watson
(1963), Fox and Goodwin (1953) and Sachenko (1961); however,
practical application of these methods to generalized situations
would require a digital computer. A method developed by
Morrison, using an IBM 7074 computer, consists of taking the
Fourier transformation of the output function and the apparatus
function, followed by a point-by-point computation of the true
function (1963). Similar methods have been developed by Mori
and Doi (1964) and by Rollett and Higgs (1962). Iterative curve
fitting techniques using the digital computer have been developed
by Skarsgard (1961) and by Gardner (1960).

Manually adjusted analog systems using function gener-
ators and summers have been described by French et al (1954)
and by Noble gt al (1959). Noble's system has been developed
by E. I. DuPont de Nemours and Company. Fully automated

analog methods have been developed and another suggested by




Kerdall (1961, 1962, and 1966).




2. Statement of Problem

The specific problem is the development of a new
analog method of deconvolution. This thesis will describe an
analog computer, based on distributed electrostatic fields,
that is capable of both convolution and deconvolution and of
automatically plotting the results. It will be shown that this
method of convoluting and deconvoluting has distinct advantages

over previous methods, both analog and digital.



3. Theory of Operation of the Convoluting Mode

In figure 1 the shaped electrode A moves along the
x-~axis over a surface T at a small distance d above it. The
potentials on the surface T'describe the true function T(x) and
for any given value of x are uniform in the y direction. The
shape of eléctrode A is given by the apparatus function y = A(x'-x),
where x' gives the instantaneous position of the electrode along
the x axis.

The capacitor C is chosen to be sufficiently large so that
the potential of electrode A is always very small compared with
the potentials of surface T. The amplifier B amplifies the
small variations in potential that appear across C. . .These
represent the output function F(x').

If electrode A is brought into the position shown from
an initial position where all the potentials beneath the electrode
were zero, there will be a redistribution of charge between A
and C, which will produce a positive signal at the input of the
operational amplifier if T(x) is described by positive potentials.

Consider an element of T with a width dx and potential
t(x). The field between t(x) and any part of A directly above it
is

E_ = t(x)/d (6)
assuming that A is very close to ground. The differential
element of charge dq that is induced on A is given by Gauss'

law, therefore

dq =eoExa(x-x')dx (7)
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where Eo is the permittivity constant in m. k. s. units. To

find the total induced charge on A, we integrate yielding

00 . :
q(x') = _0\6(\ eot(x)a(x—x')dx/d "(8)

Using the relation q = ¢V and writing V = f'(rx'),' we arrive at

Ge (0]

f(x'):-CTO f t(x)a(x-x")dx (9)
-0

where c is the capacitance of C, assumed large compared with
all other interelectrode capacities, énd G is the gain of
amplifier B.

Upon inspection, it is easily séen that equation (9) has
the form of a convolution integral. Comparing it with equation
(1), we see that if t(x) is made to correspond with the true
function T(x), and a(x-x') to the apparatus function A(x'-x),
then f(x') differs from F(x') only by a constant scaling factor,
Care has to be taken so that the shapes representing A(x'-x)
are oriented to allow for the reversed sense of the argument
in a(x-x'). The complete range of values of F(x') are obtained
for all values of x' under consideration by sweeping electrode A
from one end of surface T to the other.

This section is an adaptation of the theory presented by

Kendall (1966).
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4. Theory of Operation of the Deconvoluting Mode

In figure 2 it can be seen that there are two capacitors
connected to the input of amplifier B. The first capacitor
consists of surface T and electrode A and shall be called CA.
The second is Cf which serves to isolate the amplifier B from
the source of the voltage describing f(x'). Let us assume that
the voltage Ve describing f(x') is always positive and that

amplifier B has an inverted output. Since the input of amplifier

B is isolated by the two capacitors, we may write

qp ta;=0 (10)

where qu is the charge on CA and q is the charge on Cf. Using
the equation relating the charge and voltage on a capacitor, we

may write

ap = Co(V,-Vg) (11)

ap = C{V-Vy) (12)

where VB is the voltage that appears at the input of amplifier B.

Placing equations (11) and (12) into equation (10), we get

CA(VA-Vg) + CVe-Vy) = 0 (13)

B
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which upon solving for VB becomes

C,V, +CV
Vy = A8 1 (14)
Cp +C;

Returning to equation (11)and making the assumption that VB
is negligible compared to V,, then

ap = CoV,- (15)

Placing this equation into (14) yields
q, +C.V
VB = .i,___f__f. . (16)
CptC
To compute Qp- let us consider a differential element dx on

surface T. Assuming again that the input of B is close to ground

t(x)
and applying Gauss' law while using the relation E(x) = — where
d
t(x)_r is a trial solution for t(x), then
e t{x) al{x-x")dx
o T
A d
But dq, = t(X)TdCA’ hence
e alx-x")dx
dC, = - (18)
d
wh ich upon integration yields
(00} 60 eo a
Cp = j — a(x-x")dx = (19)
-00 d d

where a is just the area of electrode A. Reconsidering qu and
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integrating, we get

COo
q, = -OcT :{O t(x)T?.(g—x Ndx. (20)

Placing (19) and (20) into (16)

. IOO
o)
— t(x) a(x-x1)dx + C,V

v = d -o0 T f f ., (21)

To exterd the analysis to a practical situation, the stray

capacity to ground C_ must be included, which upon introduction

S
into (16) yields
(0]
€
—3— o‘of t(x) alx-x")dx + C.V,
vV, = ,. (22)
B € o
T+ Cf + CS

The voltage V_, could also be obtained by considering a Gaussian

B
surface enclesing the sides of the capacitors that are directly

connected to amplifier B. To continue, we write the equation for

the output of amplifier B which is

oo : —
€
- E—o _J t(x)_ra(x—x Ndx + CfoJ
_GVB =

K

tx)_ = (23)

where G is the gain of amplifier B and for convenience we have
€ a

defined K :-g-m +C,+C

¢ Rewriting (23)

5
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le's) t(X)TK

-39- —or‘)/‘ t(x)Ta(x-x')dx +cfvf= G (24)

If the gain is made very large compared to t(x)TK so that VB is

very-small, then

(0o

€
-2 ~
3 -Oof t(x)Ta(x—x')dx + Cfo =0 (25)
Therefore
~ % fo's}
Vf = —a—c—:- .f Et(x)_J a(x—x')dx (26)
f -0

However, if this is true then the voltages t(x)T must describe
very closely the negative of the true function t(x) that gave
rise to f(x'). Hence, if electrode A has been oriented to allow
for the reversed sense of the argument in a(x-x'), we have

deconvolution.
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5. Experimental Apparatus

5.1 Description of Physical Structure of Computer_

The same physical structure was used for both the
convoluting and deconvoluting modes. The surface T consisted
of 125 copper strips that were mounted on a plexiglass platen
that had been machined to a tolerance of + 0.001in. These
strips were insulated from each other and were connected to
0.01puf polystyrene—mylar' /capacitors. A plexiglass carriage
equipped with wipers was made to roll on tracks that were also
machined to + 0.001 in. as shown in figure 3. This tolerance
was necessitated by the é— i'elationship shown in equation (9) and
the small value of d chosen to minimize fringing and to obtain a
good signal to noise ratio. In order to maintain thistolerance
under variations in climatic conditions, a system of braces and
jacks was added.

The shaped electrode A was mounted on an insert that
fitted into the frame of the carriage. This insert had a three
point suspension system so that the electrode could be made
parallel to T. The electrode was made from aluminum foil,
and mounting to the insert was done with thin pressure sensitive
double coated tape. Shaped electrode A was driven across T by

the writing arm of the X-Y recorder.

5.2 Procedure for Constructing Shaped Electrode

The shape of the electrode was prepared by first making
a tracing of the function a(x-x'). From this tracing a cardboard
form of a(x-x') was made. This form was placed over the

aluminum foil that was already mounted on the insert. A razor's
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edge was run along the edge of the form, thus producing the
function on the foil. The cardboard form was moved slightly and
a second line describing a(x-x') was cut into the foil. A set of
tweezers was used to remove the small strip of foil between the
two functions. Resulting was the shaped electrode describing
a(x-x') that was immediately surrounded by the remaining portion
of the foil which was grounded to minimize fringing as seen in

figure 3.

5.3 Auxiliary Memory

In addition to the capacitive memory for t(x), another 125
copper strips and capacitors of the same value and type were
mounted on the platen. This served as an extra memory for
f(x'). This is shown as detached from the platen in figure 3 to
indicate that it was non-essential for the operation of the device

in either mode of operation.

5.4 Electronics of Convoluting Mode

The electronics associated with the convoluting mode of
operation are shown in figure 3. The copper strips and the
electrode describing a(x-x') corresponded respectively to
surface T and electrode A mentioned in the section on theory.
Voltages were introduced on T by direct contact to a power supply
or automatically by connecting the output of the curve follower to
the appropriate wiper on the cart. Changes in these voltages of
less than 0.25 per cent were typical for storage times of ten hours.
Polarization tests were also performed with voltages up to 350V

with no detectable permanent polarization of the capacitors. Cable
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L connected electrode A with amplifier B. This cable was a
graphite coated coaxial cable where the graphite coating helped
to reduce the noise introduced by the cable flexing as the
carriage swept across surface T. Amplifier B was an electro-
meter with an input impedance of 10149. This high input
impedance was necessary to minimize leakage. Since the
capacity of the electrode A and associated cables was in the
hundreds of picofarads range, atime constant in the ten thousand
second range was possible which far exceeded the time for a
sweep between the two zeroing positions. Capacitor C was a 1000
pf mylar capacitor. This capacity was large enough to keep the
voltages on A near ground. The voltages on A seldom exceeded a
maximum of 0.75 V which corresponded to several hundred volts
on T; thus, the A voltages essentially did not alter voltage dis-
tributions on T. Switch S short-circuited capacitor C when
electrode A was over the zeroing position to remove any residual
charge on C. Switch S was specifically designed for operation in
such a high impedance network. A shielded relay coil and arm
were used to drive a plexiglass rod that made and broke the con-
tacts of the shielded switch S. This method was necessary to
eliminate the large switching transients associated with standard
commercial relays. The switching transient associated with this
arrangement was + 2mV. Finally, the output of amplifier B was
plotted on the X-Y recorder.

5.5 Electronics of Deconvoluting Mode

The electronics of the deconvoluting mode are shown in the

block diagram of figure 4. Surface T, electrode A, cable L,
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switch S and amplifier B have been described previcusly. Thedc
offset was introduced into the feedback loop to allow easy
compensation for the small dc level of amplifier B. Filters 1 and
2 were necessary to eliminate high frequency noise generated by
amplifier B, to reduce sixty-cycle noise, and to limit the
response of the system. Amplifiers E and F were added to
provide the large gain required by the theory. Amplifier B was
run with a gain of 300 when the system was near equilibrium,
while amplifiers E and F were run at gains of 10 and 2
respectively, giving a net amplifier gain of 6000. The electronic
details of the dc offset, filters 1 and 2, and amplifiers E and F
are shown in figure 5. The logic was introduced to prevent any
positive voltages from being deposited on T. This corresponded
to rejecting nonphysical solutions since most spectra, excluding
derivative spectra, are such that they lie on only one side of the
base line. Filter 3 was constructed to eliminate frequencies
that were low enough to pass filters 1 and 2 but were still able

to prevent t{x) . from being smooth. However, the smoothing of
filter 3 did not remove the important structure of t(x)T as will be
seen in the results. The voltage Vf describing f(x') was gener-
ated by an optical line follower viewing plots of f(x'). The
maximum output voltage of the line follower was 6V but an
additional potentiometer was included to control the maximum
voltage appearing across Cf. A capacitor was placed in this
curve follower network to smooth V_.. Finally, the capacitor Cs

f

was a trimmer capacitor ranging in value from 80-150 pf. This
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capacitor gave added control over the magnitude of the voltage
appearing at the input of amplifier B. The exact electronic
details of the logic, filter 3, and the curve follower network are
shown in figure 6.

In figure 4, it can be seen that the oscilloscope and
recorder displayed the trial solution as the voltages on T
were modified. The output of amplifier F was also displayed.
This output contained nonphysical results before they were
rejected by the logic. This rejection in turn caused a further
modification of the trial solution because of the closed loop
nature of the system. Viewing the magnitude of these nonphysical
results gave a measure of the mismatch between f(x') and f(x')_r.
It should be noted at this time that the method of successive
modifications of the voltages on the t(x)_r memory and the
viewing of the nonphysical results before the logic are common
to the computers of Kendall (1961 and 1962). Moreover, the
rejection of nonphysical results was included in the programs

of Mori and Doi (1964).
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6. Results

6.1 Deconvolution Without Filter

To illustrate the importance of filter 3, figure 7(c) shows
data that was obtained before its introduction into the system.
Curve 7(a) is the convolution f(x') in which a(x-x') is an isosceles
triangle of arbitrary width b at the base and t(x) is two approxi-
mately isosceles triangles of width 0. 246 b at the base and a
distance 0.556 b between their apexes. This convolution was
obtained electronically. The slight asymmetry is due to the
poor regulation of the power supply that was used to introduce
t(x) on the strips; thus, the triangles were not exactly isosceles.
It can be seen, also, that f(x') does not exactly return to the
base line. This is due to the flexing of cable L and some minor
leakage. Curve 7(b) is a plot of the convolution as stored in the
discrete auxiliary memory described in the section on the
experimental apparatus. Curve 7(c) is the deconvolution of 7(b).
The jagged structure of 7(c) can be principally attributed to the
insufficient response suppression of filters 1 and 2. A secondary
cause of this structure was the discrete nature of the auxiliary
memory; however, even when the curve follower was used as the
memory for f(x'), this structure was still observed. The attempt
to produce the triangular structure of t(x) is apparent in 7(c).

The remaining deconvolution data that shall be presented
were obtaned with filter 3 in the system and with the curve

follower serving as the memory for f(x').
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f(x')

xl

(b)

t(x)r

(c)

-

~ (@) CONVOLUTION OF alx-x')= :./ﬁ AND t(x) =

(b) f(x) STORED BY AUXILIARY MEMORY 24663
(c) DECONVOLUTION t(x) OF f(x') WITHOUT FILTER 3
FIGURE 7
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6.2 Deconvolution to a Delta Function Singlet

Curve 8(a) is the convolution f(x') in which
~x-x )’

2
e

[z

and t{x) = 6(x). As is apparent, a(x-x') is a normalized

a(x-x') =

Gaussian function of ¢ = 1 where ¢ is the standard deviation.
Applying the rule for integration involving Dirac delta functions,

it is obvious that

fx') ==

Vor
The error between this electronically computed integration and
the hand calculated integration is 0. 52 per cent with respect to
the width at half height. Again, the failure of f(x') to return to
the base line can be attributed to cable flexing and leakage.
Cable L was oriented to reduce the stresses introduced by
flexing. Considerable effort was spent in minimizing leakage.
Cable lengths were reduced to a minimum and extra insulation
was added where necessary and physically possible. Curve 8(b)
represents the deconvolution back to the ''delta function'. This
represents an enhancement in resolution by a factor of approxi-
mately 6; that is, the width at half-height of 8(b) is a sixth of the
width at half-height of 8(a). The system could not return com-
pletely to the delta function, which is equivalent to having only one
strip charged, because the response of the system has been

deliberately limited for reasons already stated.
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f(x")

t(x)T

(b)

() CONVOLUTION OF A GAUSSIAN AND A DELTA FUNCTION SINGLET
(b) DECONVOLUTION OF 8(a)
FIGURE 8
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(o2
w

Deconvolution to a Delta Function Doublet

Curve 9(a) is the convolution f(x') of

a(x-x') =

and t(x) = a,6 (x +0.267w) + azﬁ(x - 0.267w) where the amplitude
coefficients a, and a, are equal and their sum equals one and
where w is the width at half-height of a(x-x'). More commonly
this is known as a doublet with equal peak heights. This
integration can be compared with figure 1l1(a) which was hand
calculated. The error in width at half-height is 1. 7 per cent due
to causes already mentioned. Curve 9(b) represents the
deconvolution of 9(a). The doublet structure is obtained but there
is a small error in peak heights. Instead of amplitude coefficients

being equal to 0. 500, a, equals 0.470 and a, equals 0.530. This

2
error can be attributed to the errors in the convolution 9(a), to the
leakage and cable flexing, and to the ill-behaved mathematical

nature of deconvolution.

6.4 Deconvolution to a Delta Function Triplet

Curve 10(a) is the convolution of

- (x-x")
2
[<]

(T

and t(x) = a;6(x + 0. 533w) + azﬁ(x) + a36(x - 0.533w) where the

a(x-x') =

amplitude coefficients a and a, are equal and their sum

r %2 3
equals one and where w is the width at half-height of a(x-x').

This is simply known as a triplet with equal peak heights. The

error in width at half-height of 10(a) compared to the hand
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f(x')

()

?(x)r

(b)

>

(a) CONVOLUTION OF A GAUSSIAN AND A DELTA FUNCTION DOUBLET
(b) DECONVOLUTION OF 9(a)
FIGURE 9




31

f(x’)

(a)

'(x)t

(b)

(a) CONVOLUTION OF A GAUSSIAN AND A DELTA FUNCTION TRIPLET
(b) DECONVOLUTION OF 10(a)
FIGURE 10



f(x')

(a)

f(x')

(b)

(a) HAND COMPUTED CONVOLUTION OF A GAUSSIAN AND A DELTA FUNCTION DOUBLET
(b) HAND COMPUTED CONVOLUTION OF A GAUSSIAN AND A DELTA FUNCTION TRIPLET
FIGURE 11
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calculated 11(b) is 2. 00 per cent. Curve 10(b) is the deconvolution
of 10(a). The triplet structure is obtained but there are errors

in peak heights. Instead of all the amplitude coefficients being
equal to 0.333, a; equals 0. 424, a, equals 0.372 and as equals
0.194. Again, the sources of error are the same as those

stated in the previous paragraph.

6.5 Deconvolution to a Square Function Doublet and

Importance of Gain

Curve 12(a) is the convolution of

~(x-x)’
2
a(x-x') ==

yaw

and t(x) = a; [H(x - 0.267w) - H(x - 0. 533w:)l + a,[H(x - 1. 066w) -

H(x - 1. 333wn where H{x) is a Heaviside step function, the

coefficients 2, and a, are equal with their sum equal to one,

and w is the width at half height of a{x-x'). This true

function is just two square functions of equal height and width

and separated from each other by a distance equal to 0.533w.

The reason for f(x') not beginning at zero is that this computation

was performed with the limits of integration reversed; that is,

the shaped electrode was swept from right to left while in the

previous computations the electrode was swept from left to

right. The reasons for the small drift from the base line have

been listed previously. Figure 12(b) is the deconvolution of 12(a).

This figure illustrates the importance of sufficient loop gain.

The amplifier gains that were used to generate curves 6 and y

were 200 and 600 respectively. It is seen that these curves
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f(x")

()

t(x)r

(a) CONVOLUTION OF A GAUSSIAN AND A SQUARE FUNCTION DOUBLET
(b) DECONVOLUTION OF 12(a) WHERE G4 > Gg > Gy > G,
FIGURE 12
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follow quite closely f(x'). The amplifier gains that were used
to generate curves P and a were 2000 and 6000 respectively.
The doublet structure is apparent in curve B and the doublet is
almost completely separated in curve a. The system could not
produce square functions because of the filters but the error in
peak heights is small. Instead of both amplitude coefficients

being equal, a; equals 0.486 and a, equals 0.514.
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7. Conclusions and Summary

7.1 Problems Encountered in Deconvolution

The ill-behaved mathematical nature of deconvolution has
been demonstrated by Fox and Goodwin (1953). The dramatic
and adverse effect of noise on deconvolution can be explained in
view of this characteristic. The work of Rautian (1958) discusses
this effect and the work of Morrison (1963) confirms it. With
these facts in mind, tﬁe results that have been presented in the
previous section are quite favorable despite some of the apparent-
ly large errors of the triplet deconvolution. Reiterating, these
errors can be ascribed to the noise generated by the flexing of
cable L, the leakage in the system and the errors of the
convolutions being processed. All three of these sources of
error can be viewed as noise.

7.2 Suggested Improvements to Computer

Fortunately, the elimination of these sources of error
is possible. A system in which amplifier B is mounted on the
carriage in which electrode A is inserted would remove the
noise generated by the flexing of cable I.. The cables that would
be flexing in such a system would be connected to the curve
follower and the output of amplifier B, which are low impedance
sections of the circuitry. Amplifier B would have to meet the
requirements of the theory and be small to facilitate mounting.
This arrangement would reduce leakage by reducing the length of
the cable in the input circuit of amplifier B. A further reduction
in leakage could be obtained by mounting all cable connections in

the input circuit on polystyrene or teflon blocks. With the
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removal of these first two sources of error, some of the errors
in the convolutions would in turn be removed.

7.3 Application to Practical Data

At this point the objection might be raised that the
convolutions that were deconvoluted were generated by this
device; thus, a circular argument seems to have been used to
demonstrate that the computer functions properly. This
objection can be dispelled by simply referring to the errors in
width at half-height between the electronically computed
convolutions and the harmd calculated convolutions. The maximum
error was only 2 per cent and the average error was 1.41 per
cent. Because of these small errors between these two
independently produced convolutions, it is safe to assume that
data produced by analytical instruments can be processed.

7.4 Advantages of this Computer over Digital Methods

The advantages of this prototype deconvolution computer
over the digital techniques are twofold. The first advantage is
that of the time saved in processing a given spectrum. To process
a spectrum with this computer, only shaped electrode A has to be
made and aligned. Compared to the tirme spent in writing the
digital programs, the time spent in performing these two operations
is extremely small. This computer can be set up in a laboratory
to process data immediately. Data cannot be processed immediate-
ly with the digital methods unless shared-time facilities are
available which is usually not the case. The total time spent in

performing a given computation is less than a minute which is,
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in general, the same as or shorter than the digital times. The
second advantage is that in order to obtain reasonably good
deconvolution results smoothing techniques which consist of
separate mathematical operations have to be introduced in the
digital programs while this new computer does this smoothing
automatically. Finally, the results of this computer are
comparable to the results obtained by the digital methods.

7.5 Advantages of this Computer over Previous Analog Methods

The analog methods of French et al and Noble et al are

not in the strictest sense capable of deconvolution. These

devices synthesize the convolution by manually constructing

peaks appropriately along the horizontal axis and adding together

the ordinates of the overlapping portions of these peaks such that

the ordinate of this sum at a given horizontal point equals the

ordinate of the convolution at that point. The Model 310 Curve

Resolver of the DuPont Company, as has been mentioned, is an

adaptation of the Noble device. Curves 9(a) and 10(a) were -
processed by this DuPont device. The DuPont device correctly

interpreted curve 9(a) as a doublet but the amplitude coefficients

were in 40 per cent error while the computer described in this

thesis yielded only a 6 per cent error in amplitude coefficients.

The DuPont device incorrectly interpreted curve 10(a) as a

doublet instead of a triplet while the computer described in this

thesis correctly interpreted the triplet structure but with a rather ]
large error in amplitude coefficients. In addition, the

analyses of curves 9(a) and 10(a) by the DuPont device were
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performed by the most experienced operator of this device in the
DuPont organization. Moreover, because an operator manually
constructs the solutions on this DuPont device, the solutions are
subject to bias which is not the situation with the computer
described in this thesis.

The previously automated computers of Kendall (1961 and
1962) were limited to dealing with situations in which the true
function consisted of a series of delta functions at a limited
number of positions. This new method is not restricted in this
sense as demonstrated by the deconvolution involving the two
square functions. The net anmmount of delta function data that can
be processed at one time by the new method is approximately
twice that of these earlier computers. .The complexity of the
electronics in these earlier computers far exceeds that of the
new computer. The results of the doublet deconvolution are
comparable to that of these earlier computers and it is thought
that the suggested modifications can bring the triplet data into
better agreement with the theoretical results.

7.6 Implications of Further Development

The further development of this computer is of great
potential importance. Low resolution instruments which usually
have the advantages of simple design, reliability, and compact-
ness arenot widely used. With the sixfold increase in effective
resolution offered by this prototype computer, low resolution
instruments could be used more widely and their advantages could

be exploited. These advantages are of immediate importance in
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the study of the upper atmosphere and space because of the
expenditures in time and money associated with the firing of a
rocket and the limited lift capabilities of present rockets.

The useful range of operation of moderate resolution
devices can be extended with considerable savings in money
compared to the cost of purchasing a high resolution device. The
components of this computer are commercially available with
the exception of the plexiglass platen with copper strips. The
construction of this platen consumed a very small amount of
material but a rather large amount of time. The time spent in
this construction could be reduced by the methods employed in
the construction of printed circuitry.

The resolution of high resolution instruments could be
further increased by this computer thus allowing the detailed
study of phenomena that are considered possible in theory but
are beyond present experimental techniques. And finally, the
discovefy of totally new phenomena not known in theory would be
made possible by the resolution enhancement offered by this

computer to high resolution instruments.
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